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Abstract - The Multistatic Tracking Working Group 
(MSTWG) was formed in 2005 by an international group 
of researchers interested in developing and improving 
tracking capabilities when applied to multistatic sonar 
and radar problems.  The MSTWG developed several 
simulated multistatic sonar scenario data sets for use in 
tracker evaluation by the group’s participants.  A 
common set of performance metrics was also agreed, to 
enable tracker algorithm comparison and evaluation.  
Previous conference special sessions of the MSTWG have 
reported individual algorithm performance on these data 
sets.  In this paper, the various results are consolidated in 
order to make a first attempt at performance cross-
comparisons. The data sets are reviewed and 
performance results are presented.  Issues with various 
performance metrics are explained. 
 
Keywords: Multistatic Sonar, Multistatic Radar, Multi-
Sensor Fusion , Tracking,  MSTWG   

1 Introduction 
 Distributed multistatic active sonar networks have the 
potential to increase ASW performance against small, 
quiet threat submarines in the harsh clutter-saturated 
littoral and the deeper open ocean. This improved 
performance comes through the expanded geometric 
diversity achieved with multiple sources and receivers, 
and results in increased probability of detection, area 
coverage, target tracking, classification, and localization 
through cross-fixing [1].  

 However, with the increased number of sensors in a 
multistatic network come corresponding increases in the 
data rate, processing, communications requirements, and 
operator loading. Without an effective fusion of the 
multistatic data, the benefits of such systems will be 
unrealizable. Effective, robust, and automated multi-
sensor data fusion and tracking algorithms become an 
essential part of such systems.  
 The Multistatic Tracking Working Group (MSTWG) 
was organized in 2005, with overall objectives: 

• Fostering the exchange of scientific and technical 
ideas, problems, and solutions related to multistatic 
tracking for sonar and radar.   

• Collaborative analysis and evaluation of multistatic 
tracking algorithms, applied to common data sets 
using a common set of metrics.  It is expected that 
each tracking approach will exhibit strengths and 
weaknesses in a scenario-dependent and metric-
dependent manner.  The goal is to capture these 
effects and better understand algorithm differences 
and their applicability. 

 The working group has met once to twice a year since 
2005, in the following locations: The Hague, Netherlands;  
Bonn, Germany;  Florence, Italy;  Aberdeen, Scotland;  La 
Spezia, Italy;  and Cologne, Germany.  The meetings in 
Florence, Aberdeen, and Cologne were in conjunction 
with special sessions on multistatic tracking held at the 
FUSION’06, OCEANS’07, and FUSION’08 conferences, 
respectively.  The proceedings for these conferences 
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contain a complete archive of the published MSTWG-
related papers.  This paper extracts results from these 
papers for cross-evaluation.  An overview of MSTWG, 
including an initial description of the commonly agreed 
performance metrics, is available [2].  In 2008, the 
MSTWG was formalized as a working group under the 
auspices of the International Society of Information 
Fusion (ISIF). 

2 Tracker Evaluation Matrices 
 The MSTWG evaluation matrices contain quantitative 
performance measures of multiple applications of seven 
different algorithms, applied to three different simulated 
scenarios.  There are up to nine different performance 
metrics, and different applications of algorithms use 
different input parameters.  The matrices are currently 
sparsely populated, as researchers have been endeavoring 
to design their algorithms and exercise them on the 
MSTWG data sets.  Some algorithms are more mature; 
others are in the design stages.  As results become 
available, they are entered in the performance matrices.  
There are now enough data to begin algorithm 
comparisons.  An objective of this effort is to initiate more 
in-depth discussions between MSTWG members to 
understand algorithm differences which explain the 
results.  The focus is not on identifying “winners” and 
“losers” as much as it is to understand why one algorithm 
performs better for a particular metric, on a particular 
scenario. 

2.1 Simulation Scenarios 
 There are three multistatic scenarios with simulated 
data which have been made available to the MSTWG for 
tracker evaluation.  The characteristics of these data sets 
are summarized below.  More details for each scenario are 
given in the references, as well as in later sections of this 
paper. 
 

• The NURC-provided data set [3].  This data set 
contains simulated contact data, with 4 sonar nodes 
(1 monostatic, 3 bistatic).  A single target is 
modeled using the sonar equation, and random false 
contacts are produced according to a Rayleigh 
distribution.  Results for this scenario are found in 
section 3 of this paper. 

• The ARL/UT-provided data set [4].  This data set 
uses acoustic data collected from an actual sea trial 
(DEMUS’04).  Two targets (one slow moving, the 
other fast) are modeled and injected into the 
hydrophone data, which is then processed into sonar 
detection contacts.  There are two bistatic nodes 
(source-receiver pairs).  Although some analysis has 
been made of this scenario, there are not yet any 
reported performance metrics suitable for cross-
evaluation. 

• The TNO-provided data set [5].  This data set is 
generated at the hydrophone time series level, and 
then processed into sonar detection contacts.  There 
are three targets modeled; one with a maneuvering 
trajectory, and two representing fixed features.  
There are four sonar nodes; two monostatic and two 
bistatic.  Results for this scenario are found in 
section 4 of this paper. 

2.2 MSTWG Algorithms 
 The following algorithms have been applied to one or 
more of the MSTWG simulated scenarios, with varying 
levels of analysis performed.  They are designated by their 
originating organization.  More detailed descriptions of 
the individual algorithms and their performance results are 
available in the references. 

• ARL/UT [6]:   A Bayesian tracking method which 
represents the posterior probability distribution as 
an ensemble of sample points. 

• GDCAN [7]:        A two-level distributed Multi-
Hypothesis Tracker (MHT), architecture.  Data 
from common receivers are associated first, 
followed by fusion across receivers.  The 
implementation is done in Cartesian coordinates 
using a linear Kalman Filter.  

• NURC [8-9]:   The primary NURC tracker is a 
distributed MHT design, which was used in the 
analyses of ARL/UT and TNO scenarios (though 
full sets of metrics were not obtained).  For the 
NURC scenario, a simpler baseline tracker was 
applied.  The baseline tracker uses an extended 
Kalman filter, logic based track management, and a 
centralized architecture. 

• NUWC [10]:  A Probabilistic Multiple Hypothesis 
Tracking (PMHT), adapted for multistatic use, and 
utilizing amplitude information. 

• SSC-SD [11-12]:  The “SPECSweb” tracker uses 
specular echoes as cues to selectively retrieve only 
a small (but relevant) subset of the sensor data for 
ingestion into the algorithm.  The approach uses 
two thresholds, reverse-time tracking, and is 
implemented with a linear Kalman Filter. 

• TNO [13-14]:    A logic-based centralized 
Probabilistic Data Association (PDA) algorithm 
using an extended Kalman Filter and adapted for 
multistatic use. 

• UConn [15,16]:  Two different tracking approaches 
are applied: 1) a maximum likelihood probabilistic 
data association (ML-PDA) algorithm, adapted to 
work in sequential, rather than batch mode, and 2) a 
Gaussian mixture cardinalized probability 
hypothesis density tracker (GM-CPHD). 
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Other MSTWG participants (APL/UW, DRDC Atlantic, 
FGAN, Metron) have so far been unable to apply 
algorithms to the data sets, but have contributed to the 
group through valuable information exchange.  Table 1 
shows an overview of the MSTWG activity to date. 
 

Table 1.  Overview of MSTWG algorithm application  
(  - results with full metrics; a – scenario analyzed, not 

all metrics calculated) 
ORG  //  Scenario: NURC ARL/UT TNO 
APL/UT (US) a a a 
ARL/UW(US)    
DRDC (CA)    
FGAN (GE)    
GDCAN (CA)    
Metron (US)    
NURC (NATO)  a a 
NUWC (US) a   
SSC-SD (US)    
TNO (NL)    
UConn (US)    

2.3 Algorithm Run 
 Each algorithm may be run multiple times on a single 
scenario.  The algorithms may have been run with 
different input parameters, such as for data input 
thresholding or track initialization, etc.  In the results that 
follow, these different tracker runs (for each scenario) are 
designated by a numeric index (1, 2, 3, etc.) following the 
algorithm identification. 

2.4 Performance Metrics 
 Figure 1 shows a selection of past analysis products 
generated by different MSTWG researchers on the three 
data sets.  The first, second, and third rows correspond to 
the ARL/UT, NURC, and TNO simulated scenarios, 
respectively.  Though a picture may be worth a thousand 
words, when attempting comparison amongst different 
algorithms they are insufficient to completely characterize 
and evaluate the various results.  Therefore, the MSTWG 
has developed and agreed upon a number of quantitative 
performance metrics, which are defined in detail in [2], 
and which will also be discussed in this paper.  The goal is 
to capture the main elements of tracker performance with 
a small set of metrics that relate to operational 
effectiveness.  The list of performance metrics is 
summarized below: 
 

• Tracker Input Metrics (based on contacts) 
 PD: Contact Probability of Detection 
 FAR:  False Alarm (Contact)  Rate 
 LE:  Contact Localization Error 

• Tracker Output Metrics (based on tracks) 
 T-PD:  Tracker PD (holding fraction ) 
 T-FAR:  False Track Rate 
 T-LE:  Track Localization Error 
 TF:  Tracker Fragmentation 

 L:  Latency (time lag) 
 ER:  Execution Rate (v. real time) 

 
Figure. 1. Without the use of quantitative metrics, analysis 

products (such as these shown for various MSTWG 
scenarios and algorithms) are difficult to compare.  

 
 Performance comparisons between tracking algorithms 
require the use of common output metrics, such as these.  
In addition, for valid comparisons, there must be 
equivalent data available as input to the respective 
algorithms.  Many of the tracking algorithms have as a 
parameter a signal-to-noise (SNR) data-input threshold.  
Such a threshold may limit the amount of data which is 
ingested by the algorithm.  This will change the data input 
receiver-operating-characteristic (ROC) point.  As 
thresholds are raised, fewer false alarms and target 
detections are available to the tracker.  Raising this 
threshold may improve the algorithm performance with 
regard to false tracks, but it may also degrade the 
performance in providing good true track holding.  In fact, 
a complete algorithm performance characterization may 
be obtained by running the tracker multiple times for 
different input thresholds.  The tracker input metrics (PD 
and FAR) infer an algorithm’s SNR threshold setting, and 
are important in identifying the input ROC operating 
point.  These metrics can then be compared with the 
tracker output, using the output tracker metrics.   
 In order to cross-compare different algorithms, it is 
important that the same input ROC operating point is 
chosen.  Two algorithms without equal access to the same 
data are sure to yield different results, and the results 
cannot be quantitatively compared.  Therefore, for 
algorithm cross-comparison, in addition to the use of the 
common metrics listed above, the same input ROC 
operating point should be used.  The use of the same 
threshold will ensure this, and the input tracker metrics 
will reflect this by having equivalent values. 
 It should be noted that the results presented in this 
paper may not be entirely conclusive.  In some cases, the 
algorithms have been applied in an optimum fashion and 
excellent results were obtained.  Given that the simulated 
scenarios are well described and the truth reconstruction is 
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knowable, tracker parameters can be set in a way that may 
produce better results than if this knowledge were 
unavailable.  Some algorithms are still in development, 
and results should be considered interim, or preliminary. 
In other cases, an algorithm may not have been optimized 
for the particular scenario.  As a result, performance in 
these cases could be considered suboptimum.  Future 
MSTWG performance evaluation efforts will consider 
“blind” data sets, where complete knowledge of the target 
and scenario is limited, or even withheld.   

3 Tracker Results and Evaluation for 
the NURC Simulated Scenario 

 Figure 2 shows the geometry for the NURC simulated 
scenario [3].  Three ships (red, blue, and green) are 
heading east, in-line, with an inter-ship spacing of 
approximately 13 km at 5kts. The target trajectory is 
shown to the north of the assets (in black) and heading 
west at 4kts. There are four multistatic nodes 
(source/receiver pairs) consisting of:  

- Node 1: Source (ship 1) – Receiver (ship 1) 
- Node 2: Source (ship 1) – Receiver (ship 2)  
- Node 3: Source (ship 3) – Receiver (ship 1) 
- Node 4: Source (ship 3) – Receiver (ship 2) 

      Note: there is no source on ship 2 and no receiver on ship 3. 

Figure 2. The NURC  simulated multistatic sonar scenario 
(Source 1 – Red;  Receiver 1 – Red;  Source 3 – Blue; 

Receiver 2 – Green; Target – Black). 

Also shown is a bistatic equi-time ellipse for the target 
location about 1 hour into the scenario. The run scenario 
duration is 180 minutes, with both sources transmitting  
1-second FM waveforms every 60 seconds. 
 Available tracker results are shown in the ROC plot 
shown in figure 3.  Each line represents one run of a 
particular MSTWG tracker on the NURC scenario.  A line 
connects two operating points:  the right point is the 
tracker input operating point and the left point is the 
tracker output operating point.  Each algorithm is shown 
in a different color.  There are four different ROC input 
operating points (corresponding to different data input 
thresholds) which have at least two different trackers 
applied. Each of these four cases is suitable for cross 

comparison, because they have access to the same input 
data for tracking.   It is seen that only slight changes in 
threshold yield dramatically different input operating 
points, due to the false alarm simulations for this scenario. 
 The results for each of these four cases are 
summarized in tables 2-5.  In general, better performance 
is obtained when high T-PD and low T-FAR are achieved.  
For the various cases, T-PD ranges from 0.58 to 1.0 and 
T-FAR from 0 to 261 false tracks per hour, depending on 
algorithm type and threshold settings.  It is more difficult 
to infer relative performance for cases which used 
different input ROC points (i.e., comparing results from 
different tables). 

MSTWG NURC Data Comparison
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Figure 3. The NURC scenario input/output ROC.   

 
Table 2.  Results for full data ingestion. 

Input Metrics 
  PD =  1 
  FAR=  796/min 
  Threshold= -∞ dB 

Output 
T-PD 

Output 
T-FAR 
(per hr) 

GDCAN 1 (distributed, 
        tree depth 2 scans) 

0.97 0 

GDCAN 2 (centralized,  
        tree depth 2 scans) 

0.87 0 

GDCAN 3 (centralized,  
        tree depth 3 scans) 

0.94 7 

SSC-SD 1 1.00 0 
TNO 1 0.99 261 

 
Table 3.  Results for 13 dB threshold. 

Input Metrics 
  PD =  0.52 
  FAR=  283/min 

Output 
T-PD 

Output 
T-FAR 
(per hr) 

SSC-SD 4 0.91 0 
TNO 2 0.67 6 
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Table 4. Results for 13.5 dB threshold. 
Input Metrics 
  PD =  0.49 
  FAR=  84/min 

Output 
T-PD 

Output 
T-FAR 
(per hr) 

SSC-SD 3 0.90 0 
Uconn 1       (ML-PDA, 
use of amplitude info) 

0.87 0 

Uconn 2      (ML-PDA, no 
use of amplitude info) 

0.80 1 

Uconn 3 (GM-CPHD) 0.88 1.34 
  

Table 5. Results for 13.75 dB threshold. 
Input Metrics 
  PD =  0.47 
  FAR=  42/min 

Output 
T-PD 

Output 
T-FAR 
(per hr) 

NURC 1 (M/N=3/3) 0.81 53 
NURC 2 (M/N=4/4) 0.74 8 
NURC 3 (M/N=5/5) 0.58 1 
NURC 4 (M/N=6/6) 0.58 0 
SSC-SD 2 0.90 0 

  
 Figure 4 shows the tracker output localization error 
obtained on the target track for all the applications of all 
the algorithms.  The input (contact) localization error, 
averaged over all data scans is 682 meters. The results 
show that in most cases, the output track localization error 
is smaller than the input, due to the filtering function of 
the trackers.  
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Figure 4. Tracker output localization error. 

 
 Figure 5 shows the tracker fragmentation rate for all 
the applications of all the algorithms.  A single track 
corresponding to the true target covering the entire 
scenario duration produces a tracker fragmentation rate of 
0.33 track segments/hour.  Results range from 0.33 to 3.4 
segments/hour.  Here, all trackers perform relatively well 
with respect to this metric.  A proposal for revising this 
metric is given is section 5.2. 
 Figure 6 shows the results for the tracker detection 
latency metric.  This corresponds to the elapsed time from 
the start of the scenario to the first output of a true 
confirmed track.  In tactical scenarios, one would like the 
latency to be small, so that prosecution or other action 
may be taken in a timely manner.  In surveillance or area 
clearance scenarios, this may be less important, because 
the time frame allows for longer search.  The latency 
values range from 1-2 minutes to slightly over an hour, 
depending on the algorithms’ approach to track initiation. 

 Figure 7 shows the computer execution rate.  This is 
reported as the fraction of the scenario time (3 hours) 
needed to process and output results from the tracking 
algorithm. With one exception, all cases had processing 
times (on a standard PC) that were faster than the real 
scenario time. 
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Figure. 5. Tracker fragmentation rate (NURC scenario). 
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Figure 6. Time to Detect Latency (NURC scenario). 
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Figure 7. Computer execution rate (as a fraction of real 

time) for the NURC scenario.  

4 Tracker Results and Evaluation for 
the TNO Simulated Scenario 

 Figure 8 shows the geometry for the TNO simulated 
scenario [5].  There are two surface ships, each with a 
towed sonar source and receiver, providing two 
monostatic and two bistatic nodes.  There are three 
targets; one is mobile with a “W” shaped trajectory, the 
other two are fixed (clutter) targets, maliciously inserted 
near the turns of the mobile target.  The scenario is 3 
hours in duration and the ping repetition interval is one 
minute (for both sources).  There are a total of 720 scans 
of data.  A summary of the analyses made is given below. 
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• ARL/UT    
 One tracker run was accomplished. 
 Only the T-LE metric was calculated. 

• GDCAN 
 Three tracker runs were accomplished using 

centralized and distributed architectures.  
Different thresholds & tree depths were 
evaluated. 

 The full set of metrics was calculated. 
• NURC 

 Two tracker runs were made, with different 
tracker parameters.  

 There were complications in calculating 
metrics for this scenario (see discussion in 
subsequent section). 

• TNO 
 One tracker run was made using only the 

moving target 
 The full set of metrics was calculated. 

• UConn 
 ML-PDA:  The tracker was run iteratively to 

get multiple targets. 
 GM-CPHD: one tracker run was  
 Metrics were calculated 
 Only the strongest 10 measurements were 

used 
 
 The GD and TNO cases were run with very close to 
the same input ROC point (threshold), and therefore can 
be compared (they have access to about the same data for 
tracking).   Tables 6 and 7 show the tracker output 
metrics. 

 
Table 6.  Output ROC results for TNO scenario. 
Input Metrics 
  PD =  0.9 
  FAR=  384/min (GD) 
  FAR = 434 /min (TNO) 
  Threshold= ~ 13.0 dB 

Output 
T-PD 

Output 
T-FAR 
(per hour) 

GDCAN 1 (distributed, 
        tree depth 2 scans) 

0.33 0 

GDCAN 2 (centralized, 
        tree depth 4 scans) 

0.94 11 

TNO 0.92 1 
 

Table 7.  Other metrics for TNO scenario. 
Input Metrics 
  (same as  
   Table 6) 

T-LE TF L ER 

GDCAN 1 190 0.0 4 0.15 
GDCAN 2  188 7.2 9 0.54 
TNO 70 1.7 1 0.66 

 
Figure. 8. The TNO simulated scenario.  Ships trajectories 

are shown in red and blue, mobile target track in green, 
and fixed clutter targets in black. 

 

5 MSTWG Metrics Issues 
 Application of the trackers to the simulated data has 
brought to light various issues with the MSTWG 
performance metrics.  This section seeks to clarify these 
issues, some of which will require further MSTWG 
discussion and resolution. 

5.1 Input PD  
 The MSTWG definition of input PD assumes no 
fusion process.  The input PD is simply the average of all 
node PDs of all the available data.  This is equivalent to 
the total data rate available to the tracking algorithm 
(input data rate).  Input PD is a function of detection 
threshold.   
 An additional metric used [1], estimates the fusion 
potential in terms of PD at the tracker input.  It is 
calculated using some fusion rule to determine 
detectability.  For example, on a given source ping, if 
“one or more” receivers detect, then the system detects.  
This PD will generally be higher than the one MSTWG 
uses, and is more related to output PD potential. 

5.2 Track Fragmentation 
 The tracker fragmentation (rate) was previously 
defined [2] to be 

   T

TT

NT
NTF
⋅

=
                                    (1) 

where NTT is the number of true track segments,  NT is the 
number of true targets, and T is the time duration of the 
scenario.  It was found that using this definition the TF 
can never reach zero, and further, it will be a function of 
the scenario duration.  An alternate metric definition has 
been proposed as  

   
T

TT

N
NTF =                                       (2) 

which is more straightforward.  This will indicate the 
number of true track segments (due to fragmentation) that 
were output over the duration of the scenario, normalized 
by the number of true targets.  Future MSTWG metrics 
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calculations should consider this metric to quantify the 
negative effect of tracker fragmentation. 

5.3 Wandering Tracks 
 Consider the example tracker output depicted in  
figure 9.  This shows a case where a tracker is effective in 
holding the target over a portion of the scenario.  At a 
certain point, the track wanders off of the target’s true 
trajectory and becomes false.  This may occur in the 
situation where there is very dense clutter.  If the track 
purity (percentage of target-originated contacts making up 
the track) is sufficiently high, the track may be designated 
true rather than false.  Alternatively, if the track purity 
drops low enough (due to the false section), the whole 
track could be labeled false.  The metric calculations in 
either of these cases will not indicate meaningful values. 
In the case of the true track which wanders, the T-PD will 
be overestimated and the LE will be worse than reality.   
 A potential solution to this problem is to implement a 
distance (or covariance error) threshold between the 
tracker position estimate and the true target position.  
When the threshold is exceeded, the track is manually 
broken into two pieces, one true and one false.  Then the 
standard metrics may be applied as usual.  To report this 
undesirable performance, a new metric would be reported.  
This would simply be a count of the number of wander 
events per target, per scenario.  
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Figure 9.  Wandering track example (part true, part false). 

 

5.4 Switching Tracks 
 Figure 10 shows a example of two targets that cross.  
The tracker output shows two tracks that erroneously 
switch assignments.  This could also occur when a target 
passes by a fixed clutter track.  Like the wandering track 
problem, this undesirable behavior will cause problems in 
the calculation of metrics.  However, the same solution 
may be applied, by splitting the tracks at the point of 
switched assignment, and then recalculating the standard 
metrics.  To report this undesirable performance, a new 
metric would be used.  This would simply be a count of 
the number of track switch events per scenario. 
 

 
Figure 10.  Track switching example. 

5.5 Multiple Simultaneous Tracks 
 Figure 11 shows an example of tracker output where 
multiple tracks are produced for a single target.  This may 
be the case when signal and information processing 
produces more than a single contact for the target in the 
data set.  Although information processing should strive to 
cluster multiple target contacts into one, this may not 
always be possible.  This will complicate the calculation 
of metrics because there are multiple true tracks to deal 
with.  If this occurs, the effect should be quantified by 
citing the number of tracks formed on each target and the 
time duration of the overlapped sections. 
 

 
Figure 11.  Multiple, simultaneous tracks example (black- 

target true trajectory, red/green/blue – output tracks) 

5.6 Latency 
 In reviewing the MSTWG results it was evident that a 
clarification is needed on the latency metric.  The tracker 
detection latency as used in MSTWG is the elapsed time 
from the beginning of the scenario to the first 
manifestation of the output of a true target track.  This 
metric therefore will be dependent on the scenario 
characteristics and the input probability of detection.  It 
only depends on the true target track.     
 This is not to be confused with the internal tracker 
processing latency that a tracker may have.  This will 
normally include the time to initialize, confirm, and output 
a track.  For example, in the case of a MHT tracker, it 
would include the delay due to the hypothesis tree depth. 
Here the latency will be the same for all output tracks, 
both true, and false.   

5.7 Multiple Targets 
 The TNO simulated scenario presents the issue of 
multiple targets in a scenario.  This raises the question 
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about how the metrics should be calculated for these 
cases.  This situation will affect the T-PD, LE, TF, and L 
metrics.  Since it may be difficult to assess individual 
target performance when results of multiple targets are 
averaged, an alternative to consider is to calculate the 
relevant target metrics once for each individual target in 
the data set.  

6 Conclusion 
 The MSTWG is now beginning to yield algorithm 
comparisons on common data sets with common metrics.   
The results are preliminary, and additional results will be 
inserted into this evaluation as they become available.  
The results are useful in order to understand algorithmic 
differences; their strengths and weaknesses depending on 
scenario and performance metrics.  This evaluation has 
highlighted several issues with the MSTWG metrics, 
which have been addressed.  Meaningful comparisons 
require not only agreement on performance metrics, but 
agreement to run the various algorithms at the same input 
threshold (input ROC point), in order to assure that they 
have the same data available.  Future MSTWG tracker 
analyses conducted on these simulated scenarios should 
select one or more of the input ROC points already used, 
to facilitate future comparisons. In general, in appears that 
better tracker performance is obtained (in terms of T-PD, 
T-FAR) when longer-duration track initialization schemes 
are used. 
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